RECENT SUBSIDENCE IN THE SACRAMENTO/SAN JOAQUIN DELTA REVEALED BY SPACE-BASED GEODESY

Ben Brooks, SOEST, U Hawaii
Gerald Bawden, USGS SW Regional
Charles Werner, Gamma Remote Sensing

Funded by the California Energy Commission PIER Program through the California Climate Change Center

thanks to:

- •Dan Cayan, Scripps
- •Noah Knowles, USGS

SACRAMENTO-SAN JOAQUIN DELTA & CALIFORNIA WATER BUDGET **OUTFLOW ANNUAL INFLOW** CA water system • 40% CA land area runoff • 50 % CA total streamflow g water for San Francisco Bay (21 maf) Sacramento River Consumptive use/ (21.2 maf) channel depletion $(1.7 \, \text{maf})$ Precipitation (1 maf) Contra Costa Canal (0.1 maf) East side streams (1.4 maf) South Bay and California Aqueducts (2.5 maf) San Joaquin River (4.3 maf) Delta-Mendota Canal Pacific Ocean (2.5 maf) San Francisco Bay (Note: maf, millions of acre feet)

FRESH WATER QUALITY & DELTA ISLANDS

California Department of Wate

DELTA ISLANDS & SEA LEVEL

Most of these areas are currently protected by levees. They would be inundated only if those levees fail or are overtopped.

ISLAND EVOLUTION, SUBSIDENCE, AND LEVEES

Island draining for agricultrural purposes \rightarrow compaction and elevation loss.

Sea level rise, ageing levees, continued (though slowed) subsidence → risk to fresh water quality.

50 YEAR PROJECTION

Mean Island Elevation - Year 2050 Key ☐ Study Area Boundary Elevation (meters above MSL) -1.99 - -1.00 -4.99 - 4.00 -3.99 - 3.00 -2.99 - 2.00 > 4.00 -0.99 - 0.00 012345 Kilometers Tract CONTRA COSTA SAN ALAMEDA

From Mount and Twiss, 2005

Based on leveling & point measurements (Deverel & Rojstaczer, 1996; Rojstaczer & Deverel. 1995) and regional topographic analysis

NEED FOR SYNOPTIC, HIGH RESOLUTION MEASUREMENT/ MONITORING OF DELTA SUBSIDENCE

SPACE-BASED GEODESY:

GPS AND INSAR (SYNTHETIC APERTURE RADAR INTERFEROMETRY)

1 component (LOS – line of sight)

•mm-scale resolution

•errors: atmospheric and ionospheric

GPS: temporal coverage InSAR: spatial coverage

INSAR AND SEA LEVEL CHANGE

Persistent Scatterer (PSInSAR) technique to take advantage of stable scattering targets like buildings and road guard rails.

PSINSAR AND LEVEE STABILITY: NEW ORLEANS

From Dixon et al., 2006

Levee failures correlated with highest subsidence rates

DELTA PSINSAR TARGETS

AVERAGE LOS RANGE CHANGE (MM/YR): 1995-2000

- •Signals from island margins (i.e. levee roads)
- ~ 5mm/yr could be low-biased
- slower than few cms/yr in Mount and Twiss (2005), but similar to Deverel and Rojstaczer (1996) measurements

1KM X 1KM GRID ANALYSIS

LEVEE MOTION DETECTION FEASIBILITY

centers of levees are expected to subside more than margins

4.25 4.24 4.24 4.23 4.29 4.29 4.19 4.18 0 Tide Gauge PBO CGPS 4.17 6 6.1 6.2 6.3 6.4 6.5 6.6 x 10⁵

GRAND ISLAND

CONCLUSIONS & RECOMMENDATIONS

- InSAR method provides a synoptic view of Delta subsidence
- 1995-2000 ~ 5 mm/yr subsidence rate, suggest slowing, could be a minimum rate
- Possible detection of gradients associated with the levees
- Tide Gauge Corrections for Sea-Level Rise monitoring
- Ground-Based High Resolution Studies

Ground-Based LiDAR Survey of Delta Levee

